Low-energy ion beam storage and eV electron cooling

Andreas Wolf Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany

COOL11, Alushta (Ukraine), 12-16 September 2011

Stored and Cooled Ions Division at MPIK (Klaus Blaum)

Laboratory Astrophysics Collaboration (Weizmann Institute, Rehovot; Columbia University, NYC; Universität Giessen; Stockholm University)

Cryogenic Storage Ring project at MPIK

Chemical physics with fast ion beams Electron cooled molecular ion beams at TSR The CSR project: layout and electron cooling Outlook: experiments at CSR

Interstellar molecular clouds

lon chemistry density ~10⁴ cm⁻³ temperature ~10 K

Star forming regions

NGC 3576-86

T.A. Rector U. of Alaska Anchorage T. Abbott and NOAO/AURA/NSF

 Interstellar molecular clouds

 Output
 Interstellar molecular clouds

Milky Way visible Cerro Tololo S. Kohle

Interstellar molecular clouds

lon chemistry density ~10⁴ cm⁻³ temperature ~10 K

Star forming regions

Milky Way visible Cerro Tololo S. Kohle

> CO radio line T. Dame Harvard Smithsonian

Interstellar ion chemistry

Reaction chains in interstellar clouds

- 140 observed interstellar molecules
- (2000)- Heavy species: CH₃CH₂OH, glycoaldehyde, maybe benzene, ...

- Ions: CH+ CO⁺ SO⁺ CF⁺ (2005) HCO⁺, COH⁺ HCS⁺ **HCNH⁺** H₂COH⁺ HC₃CNH⁺ SH⁺ (2010)

 H_3^+

Molecules cool the star-forming regions **Observed by infrared and radio spectroscopy**

ON2 Star forming region ("Chicken" Nebula) Infrared

> UKIRT Mauna Kea **Chris Davis (JAC)**

Molecular breakup by cold electrons

Molecular breakup by cold electrons

Molecular breakup by cold electrons

Molecular cloud chemistry

Electrostatic storage rings

Mass independent beam storage: large molecules and clusters

Molecular decay: evaporation of electrons and heavy fragments – cooling of multidimensional vibrations

Laser excitation and delayed decay

Electrostatic storage rings

ELISA (Aarhus)

KEK Tokyo (biomolecules + 10 eV electron cooler)

Merged electron beam

Fragmentation of amino acids, DNA base pairs, by ~10 eV electrons

T. Tanabe, PRL 93, 043201 (2004)

Electrostatic storage rings

ELISA (Aarhus)

High-resolution electron target

D. A. Orlov et al., J. Appl. Phys. 106, 054907 (2009)

with 10 µA current (0.01 T guiding field) D. A. Orlov, C. Krantz, A. Shornikov Collab. with Inst. f. Semiconductor Phys., Novosibirsk, A. N. Terekhov

High-resolution electron target

D. A. Orlov et al., J. Appl. Phys. 106, 054907 (2009)

D. A. Orlov, C. Krantz, A. Shornikov WILL IO HA Collab. with Inst. f. Semiconductor Phys., Novosibirsk, A. N. Terekhov

- Magnetic expansion (~0.4 T \rightarrow 0.02 T) yields 0.5...1 meV electron temperature (~5...10 K)
 - Cathode lifetime typ. 24 h
 - ~4 cathodes under vacuum in closed-cycle operation since >2 years
 - 2008: Beam transport down to < 1 eV with 10 µA current (0.01 T guiding field)

Max-Ri für Ki

Polyatomic ions at TSR

Fragmentation pathways of dissociative recombination

Molecules built up by ion chemistry

Polyatomic ions at TSR

Fragmentation pathways of dissociative recombination

Cryogenic electrostatic storage ring CSR

Stored ion beams with keV energies of large compounds, clusters (cations, anions),

heavy atomic beams, highly charged ions

Cryogenic storage ring CSR

CSR cryo and vacuum tests – the CTF

CTF: Ion beam trap with CSR cryogenic (2 K) and vacuum concept

CSR cryo and vacuum tests – the CTF

CTF: lon beam trap with CSR cryogenic (2 K) and vacuum concept

Max-Rlanck-Institut für Kernphysik

Low-energy photocathode electron beam

A. Shornikov, C. Krantz

Merging section for electrostatic rings

A. Shornikov et al., COOL09, THM2MCCO03

Max-Planck Institute for Nuclear Physics. Heidelberg, Germany

A. W.

Stored and Cooled Ions (K. Blaum)

Atomic and molecular quantum dynamics

Atomic and molecular physics

Electron target

Photocathode

O. Novotný (**) H. Buhr (*) C. Krantz A. Petrignani (*) B. Jordon-Thaden (*) **D. A. Orlov (*)** A. Shornikov C. Domesle **D.** Bing (*) M. Mendes (*) M. Berg J. Stützel F. Grussie **Bian Yang** C. Nordhorn (*)

Stored and cooled ion instrumentation

TSR and accelerator

M. Grieser **R. Repnow** R. von Hahn

www.mpi-hd.mpg.de/blaum/molecular-qd storage-rings

Collaborations

A. Müller

Weizmann Institute of Science Rehovot, Israel

- H. Buhr (*) D. Schwalm O. Heber
 - M. Rappaport
- Univ. Giessen, Germany S. Schippers
 - ÍAM P
- Columbia Univ., NYC D. Savin **O. Novotný (**)**
- Univ. Stockholm M. Hamberg W. D. Geppert

Univ. Louvain-La-Neuve, Belgium X. Urbain

- D. Zajfman D. Shafir (*)

Max-Planck Institute for Nuclear Physics. Heidelberg, Germany

Stored and Cooled Ions (K. Blaum)

CSR and CTF I

- K. Blaum R. von Hahn M. Grieser **R.** Repnow M. Froese M. Lange
- **F.** Fellenberger
- S. Menk
- F. Laux
- T. Sieber (*)
- J. Varju
- F. Berg
- D. A. Orlov (*) R. Bastert (*)

Photocathode electron beams and cooled molecular beams

www.mpi-hd.mpg.de/blaum/molecular-qd storage-rings

J. Ullrich, K.-U. Kühnel, J. R. Crespo Lopéz-Urrutia, C. D. Schröter

Collaborations

Weizmann Institute of Science Rehovot, Israel

- Y. Toker O. Heber M. Rappaport
- X. Urbain A. Terekhov

D. Schwalm D. Zajfman

Louvain-la-Neuve, Belgium ISP Novosibirsk, Russia

